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Abstract-Using perturbation analysis. the influence of material inhomogeneities of special
geometry on shear band initiation in conditions of plane strain is studied. A hyperelastic material
model which represents the behavior of incompressible po(ycrystallic material is used. Particular
attention is given to equivalent strain and pressure distributions. An initiation of main and side
shear bands is described and the relation between perturbation analysis results and the phenomena
preceding the ductile shear fracture is discussed.

1. INTRODUCTION

Experimental observations suggest that inhomogeneities in constitutive properties play an
important role in the initiation and growth of localized shear bands.

The material inhomogeneities may be modelled in several ways. In the basic and most
simple variant the inhomogeneity is described as a band (i.e. in a three-dimensional model
as a layer) of homogeneous properties [sec e.g. Hutchinson and Tvergaard (1981)]. The
inhomogeneity in the form of a layer represents an idealized configuration. In actual
materials, the presence of approximately equiaxed isolated zones of imperfection is more
probable. The strain response of such materials was studied by Abeyaratne and Tri­
antafyllidis (1981). In that study, the authors assumed plane strain deformation and exam­
ined the clfect of inside homogeneous rectangular inhomogeneity (in plane section) whose
geometry was chosen in such a way that the diagonal of the rectangle coincides with
the critical direction of shear band initiating in a homogeneous body. Concentration of
deformation was shown using the shear component Ell of the Lagrangian strain tensor.

The aim of the present study, using the analytic perturbation method of Abeyaratne
and Triantafyllidis (1981), is to elucidate the influence of inhomogeneity geometry on shear
band initiation, with an emphasis on equivalent strain (e<) and pressure (p) distributions.
The values of 1;< and p control the processes of strain and damage evolution in real
materials-the nucleation and growth of voids-and, finally, the shear fracture. The
analytical results also allow for the study oflocal conditions in the region of the deformation
band intersection.

2. HYPERELASTIC MODEL AS A MODEL OF PLASTIC BEHAVIOR OF POLYCRYSTALLIC
MATERIAL AT SMALL DEVIATIONS FROM PROPORTIONAL LOADING

As it is commonly known, the deformation theory represents a suitable approximation
of polycrystaIlic material behavior for small deviations from proportional loading [Storen
and Rice (1975), Christophersen and Hutchinson (1979)]. More recently, Kitagawa and
Matsushita (1987) have compared, using a new approach, the properties of fictitious
monocrystal or of polycrystal composed from randomly orientated fictitious monocrystals
with the properties of continuum described by the deformation theory. Results of their
study also showed that the deformation theory describes the properties of polycrystallic
materials in a satisfying manner; the conclusions are not constrained either by a concrete
type of crystal lattice with the corresponding geometry of slip systems or by any particular
hardening behavior. In the study by Kitagawa and Matsushita (1987) a hypoelastic version
of the deformation theory was used [a variant of Storen and Rice (1975)], and the defor­
mations have not exceeded the value of 0.2. Since at higher deformations the difference
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between the hypo- and hyperelastic version of the deformation theory becomes apparent.
it is important to decide which of the two versions is more convenient for modelling
polycrystallic material. The experiment can be taken as suitable criterion.

Some results of comparing critical strains Gc for shear band initiation in hyperelastic
material with fracture strains Gf determined experimentally are presented by Novak (1990).
for materials varying significantly in the strain hardening response. With realistic description
of strain hardening. the hyperelastic model provides results that correspond well with
experimental data. Consequently. we consider this model suitable for analyzing the inhomo­
geneity influence on shear band initiation.

3. PROBLEM FORMULATION

The method of problem formulation is similar to that used by Abeyaratne and Tri­
antafyllidis ( (981) for hyperelastic material. The significant difference lies in the geometry
of inhomogeneity and its physical interpretation.

Since many basic relations presented in Abeyaratne and Triantafyllidis (1981) remain
valid in our paper (relations ( 1.1 )-( 1.11) of their study), we outline only briefly the problem
formulation. A hyperelastic body of incompressible material with deformation energy
density W is undcrgoing deformation in such a way that the current point position (.1' I' YJ
is related to the initial point position (x,.x,) according to the relations:

.1', = i..,x, +0(1< '),

y. = i.., 'x, +O(R '), as R Ix1-;. '"~" (I)

V,'here i. n represcnts the applied stretch at infinity in the xI-direction. Under the plane strain
conditions and considering material incompressibility, the potential W may be expressed
as a function or the invariant. I, of the right Cauchy Grcen tcnsor, C. and of the initial
position of the material point x = (x I. x,). IV = W(l, x). We assume that the inhomogeneity
is in the plane section limited to a bounded region D. That is, function W is of the form:

(2)

where IV" is the elastic potential associated with the homogeneous body, ~ is the "measure
of imperfection" and fi> is a function whose support is equal to D, i.e.

~f'(l, x) = 0, for XE R 2
- D,

~V(l,x)#O, forxED.

If we consider a simple power hardening law with exponent I/n, then IVo(l) may be written
in the form:

(3)

In (2). we suppose that JT'(/. x) = W(f'l, x) holds, where r is the unperturbed part of 1
associated with the homogeneous body. The function ~V(lu,x) is assumed to be in the
form:

(4)

where I = /(x"x,) will be specified in the following text. The form (4) is in accordance
with the asumption that the inhomogeneity material ditfers from material outside the
inhomogeneity only in the value of the strength coefficient. whilst preserving the qualitative
character ofstress-strain relations. rn our case. this means that values of the strain hardening
exponent arc the same in both parts of the body. We assume the inhomogeneity to have a
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circular cross-section in its undeformed state. in particular. numerical calculations were
performed under the assumptions (a > 0) :

for J(xi+xD > a. (5)

The consequences following from the form off(x I. X2) will be discussed qualitatively further
in the text.

Under these assumptions we look for a space distribution of certain quantities that
may be derived from Y,(x) and p(x). where p is a scalar pressure field. Using the equilibrium
equations and the incompressibility condition. we obtain a system of equations for the
unknown functions y,(x) and p(x).

4. PERTURBATION ANALYSIS

Functions )",. Y2 and p are assumed to be functions of x and';. for'; -- 0 we may write:

)", = ;.ox, +~/II(X)+IT(~).

Y2 = ;'1) 1_\·2+~/12(X)+(1(~).

I' = 1'I)+~,,(x)+IT(~). (6)

To satisfy the incompressihility condition we lise the displacement rotentiall/J(x) such that

(7)

After the elimination ofp from the equilibrium equations we obtain

(8)

where JI. (1 and Ji· have the usual meaning. i.e the same meaning as in the linearized form
of the constitutive equations for plane strain tension for isotropic. incompressible. elastic
material under the conditions of special axes' orientation (Hill and Hutchinson. 1975):

v v V
(1" -(122 = (1 = 2Ji·(/:11 -1:11)

v
IT 11 = pi; '1'

Function g can be expressed using eqn (4) as

If 2JI - Ji· + (Jl 1
- 0'!j4)oS > 0 (the strain level is lower than the critical strain for shear band

initiation in the perfect body) then the solution of eqn (8) may be written in the form
(Kofron et al.• 1988):

(9)
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where
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The solution was found using the theory of distributions (Shilov. 1965). The function
G(XI,Xl) in (9) may be explicitly expressed in terms of elementary functions. using the
methods of complex analysis (Kofron et al.. 1989).

5. EVALUATION OF STRAI:-.l AND PRESSURE FIELDS

The displacement potential t/J(x I. x J allows for the possibility of deriving. in a simple
manner. two characteristics of the strain field: the equivalent strain Se and the shear
component Ell of the Lagrangian strain tensor E. Similarly. as in Abeyaratne and Tri­
antaphyllidis (1981). we obtain:

foe = I;~l+~i;e = (2/3 05 )'ln ;'0(2!305)~t/J.12'

£12 = £?2+~EI2 = 0+«(/2)~U.~t/J.22-;.():t/J.11)' ( (0)

In order to cktermine the factor fi in eqn (6) we must return to the equilibrium equations.
It is not dillicult to show (Nov[\k and Lauerova. 1990) that for the region outside the
inhomogeneity the following equation holds:

( II )

The expressions for 1/1.12' 1/1.::. '/1.11 and J1/1.::2 dx I which are met in eqns (10) and (11) may
be expressed in the form:

where

I/J.'II = f', r",. lJ2G(XI-W/,X2-W:)/ax,Dxll'.lJ(WI.W2)dWj dw:.

f'/l.222 dx 1 = f', f.':" ll)(x I. X2 ;WI' 0)2) .g(WI, 0) 2) dw 1 dw 2, ( 12)

The integration in (12) represents an integration over the circle domain j(~;~+~~r) ~ a
with respect to (5). Explicit expressions for partial derivatives of function G were presented
by Nov[\ k a nd Lauerov[\ (1990).

Remarks on numerical calculations
We used the following integration formula. It represents a modification of a basic

formula presented in Krylov (1967):

fr F(r,.r2)dr,dr2 = (3rr/20)'(5/n)"f F[(2/3)05cos(2krr/n+¢).
In k-O

(2/3)°5 sin (2krr/n+¢)], (13)

where n is a circle J (:d + x~) ~ a. We took fI = 50 in (13).
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Fig. I. Angular variation of e. along the circular arcs of different radii. Strain hardening exponent
I/n '" O.:!5. deformation measure! '" (,[,,-l)!(i.c-I) = O.9l'l.

6. RESULTS OF CALCULATIONS

6.1. The distrihlltions ofselected qllantities in the l'icinity of inhomogeneity
Figures I, 2 show angular variations in the quantities if. and palong circular arcs with

radii r = 2£1 and r = 20£1. placed in the center of the inhomogeneity domain. for n = 4 and
1= (),"- Il!o,< - Il = 0.98. The characteristic angle in the undeformed configuration is
()< = 59,3'. Both quantities take maximum absolute values in the direction corresponding
approximately to the characteristic angle 0< and determine the local conditions in the main
shear band. Other local peaks encountered in Figs I and 2 correspond to side deformation
bands of opposite signs. According to Abeyaratne and Triantafyllidis (1981). the existence
of three peaks in an angular variation of E,~ is associated with three characteristics passing
through the vertices of the inhomogeneity. (The inhomogeneity was assumed in the form
of a rectangle whose diagonal is inclined from the x I-axis at the characteristic angle ()<.)

Since the three peaks in angular variations of quantities £,~, if. and p have also appeared
for circular inhomogeneity, we arc of the opinion that the reason for the side band initiation
lies in the geometrical constraints of the problem. This reason may be elucidated comparing
two models containing different types of inhomogeneity. In the first model (Hutchinson
and Tvergaard. 1981) the inhomogeneity is supposed in the form of a layer and a free
relative displacement of two homogeneous parts of the body (outside the inhomogeneity)
is possible, in consequence of which the side bands do not appear. In contrast to this, in
Abeyaratnc and Triantafyllidis' (1981) model (and also in our own model) such a dis­
placement is excluded and the side deformation bands compensate for the effect of the main
deformation band.
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Fig. 2. Angular variation of p along the circular arcs of different radii. Strain hardening exponent
I;" = 0.25. deformation measure' = (;',,-1 ),(i.. - I) = O.911.
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Angular variations in the quantities £1: and So have similar shapes in the peak region.
but they differ near the problem symmetry axes. (£ I: is equal to zero on these axes.)
Quantities So and p attain non-zero values on these axes. and. moreover. they are approxi­
mately proportional to each other.

An interesting effect of the rotationally symmetric inhomogeneity profile may be
shown. The profile corresponding to the function f = -Ixl"+a". x = (xl.x:>. Ixl < a.
may be taken as another possibility comparable with the cosine profile described by (5).
Considering various functions. f. which differ in exponent n. the deformation bands change
their signs in going from n < 2 to n > 2 or inversely. For n = 2 the inhomogeneity initiates
no deformation bands. This effect also explains why the deformation bands associated
with the cosine profile are of the opposite signs to those described by Abeyaratne and
Triantafyllidis (1981).

U sing an analytic formula it can be shown which effects arise in the case of shear band
intersection. If we consider two inhomogeneities (of the same type and size) with the
distance between the centers being greater than 2a. it follows from eqn (12) that the values
of f e • Pand £1: ontained are equal to the sum of the relevant values associated with each
of the inhomogeneities. In particular. the values of the shear strain component. £1:- vanish
in the region of band intersection.

6.2. Influence ofhoth the straining lac! and thc strain hardening exponcnt on the helWl'ior of
selected quantities near the inhomogeneity

As is known from the results of shear band bifurcation analysis. the change in the
strain hardening exponent lin results in the change of both critical strain for shear band
initiation and band orientation. The distributions of I;e and pdisplay similar characteristics
for the strain level close to the critical strain, for both n = 10 and n = 4. The calculations
of f o and p wen: performed for n = 4 and n = 10. for strain levels characteril.ed ny different
values of I, 1= 0.94. 1= 0.% and 1= 0.9X. Figures 3 and 4 show the angular variation or
f c along the circular arc with radius r = lOa. It is seen that f c is concentrated highly in the
region of the main deformation nand U'c changes approximately proportionally to (I _I) I).

7. DISCUSSION

The relationship between model calculation results and experimental observations of
deformation bands has already been discussed by Abeyaratne and Triantafyllidis (1981).
The results of the present work permit certain conclusions:

The main deformation bands are accompanied by side deformation bands of opposite
signs, therefore deformation bands may be initiated by both negative and positive inhom-
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Fig. 3. An..:ular variation of f. along the circular arc of radius r = 20a for different strain levels.
- Strain -hardening exponent I " = 0.25.
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ogem:ltles. (Positive inhomogeneity may be represented by a region with a greater con­
centration of rigid inclusions.) This is the difrerence from the layer model presented by
Hutchinson and Tvergaard (19X I) where the positive inhomogeneity does not promote the
strain concentration and localization. Moreover, a change in inhomogeneity profile can
cause the change in the signs of the main and side deformation bands.

The hydrostatic pressure dilrerence develops in proportion to the dillcrence in equivalent
strain. The same relation holds for an inhomogeneity layer model (Nov[lk and Lauerov[l,
1990). Consequently, we may describe cavity nucleation as a part of the fracture process
by using unique local parameter--Iocal deformation, even though nucleation depends in
general on both parameters --local deformation and local hydrostatic pressure.

The additivity ofEc and p in the region of the deformation band intersection corresponds
to experience-the initiation of the macroscopic crack proceeds in the region of the defor­
mation band intersection. The initiation of the deformation bands may be identified with
the initiation of fracture; the knowledge of local conditions in the region of the deformation
band intersection permits bettcr understanding of the phenomcna preceding the fracture.
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